GrsLowmisT

XDPoSChain Security Audit Report

Contents

11 EXECULIVE SUMIMIANY-rvsssrrersssserssssssesssssiesssssssss s s 2
2. Project BACKGIrOUND (CONMTEXE) - rrrsssrrrmssisiriissis st 3
2.1 Project Introduction . suiiiialaii blisldiniblib bbbl bl bbbl bl 3
2.2 SCOPE. OF AU ivveririsiortriiosnsiniomsiniamstiaimtrisiniont i aiorssiviorssiviorssbriassstnissssspisiosssinissuriainiestrisinssrisisserisindontrinion 4
3, COAE OVEIVIEW:++trrrvsesessrestaeeseasisissasssessssesssssese st ssess e s e s b s s s e e bbb sttt 4
3. INFFASIIUCTUIE v+ vreeseseserseeseeesetassse s et st s s st se s s ettt 4
3.2 COdE COMPIANCE AUIL: +-wrvsseeeresreressieremseeresereeeis s 5
3.3 Random Number Generation AlGOrthm AUt - - srreserrrisserisieeseis s 7
L o 2 o Bt o P e e e e P A 3P e et oty S o 8
3.5 Cryptographic COMPONENt Call AUt :-vusicommisiicemisiiiostsiniacsrisiaionssiassstsibiusasssinssstsissinssiaiesssiniosssisiasarisis 8
3.6 ENCIYPHON: STENGHN AUIT ettt ittt oot ei s s oot s esnies 8
3.7 Length EXENSION AHACK AUt - serresssrrrressrsrsimsinscieississessies s 8
3.8 Transaction Malleability AACK AUGIL: -+ rwrrssrrrrissiserrsisesseiisesssisss s 9
3.9 Transaction Replay AtACK AUCL - wrrrrsreriises i 9
3,710 TF 1008 (201G TN £ NUB [i500crssiur e s sceirio oo on s s o3 0o 063 B S i e 10
N R R C TS S [] L O e BB SOV PTG OSBRI IO P SO 12
B AUGIE RESUIE:+++v+vsevressreeseetseasessssstssesessssesessse st st ssssse s st ssess s s e see s a b b s bbbt s et 12
4.1 LOW-TISK VUINEIADIIYS:---vvsseervsessrerissss s 12
4.2 ENNANCEMENT SUGGESTIONS +-rrvvrserrrvssisrrissss st 12
4.3 CONCIUSION i s st it et e s e e L L e L e el e L e L e e L e L e L L T L 12

S S T o 1T) T A 13

11. Executive Summary

On April 19, 2021, the SlowMist security team received the XDPoSChain team's security audit
application for XDPoSChain , developed the audit plan according to the agreement of both parties
and the characteristics of the project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of “black, grey box lead, white box assists" to
conduct a complete security test on the project in the way closest to the real attack.

SlowMist blockchain system test method:

Black box Conduct security tests from an attacker's perspective externally.

testing
Grey box Conduct security testing on code module through the scripting tool, observing
testing the internal running status, mining weaknesses.

White box Based on the open source code, non-open source code, to detect wether there

testing are vulnerabilities in programs suck as nodes, SDK, etc.

SlowMist blockchain risk level:

Critical Critical vulnerabilities will have a significant impact on the security of the

vulnerabilities | blockchain, and it is strongly recommended to fix the critical vulnerabilities.

High-risk High-risk vulnerabilities will affect the normal operation of blockchain. It is

vulnerabilities | strongly recommended to fix high-risk vulnerabilities.

Medium-risk | Medium vulnerability will affect the operation of blockchain. It is recommended

vulnerablities | to fix medium-risk vulnerabilities.

Low-risk vulnerabilities may affect the operation of blockchain in certain
Low-risk
scenarios. It is suggested that the project party should evaluate and consider
vulnerabilities
whether these vulnerabilities need to be fixed.

There are safety risks theoretically, but it is extremely difficult to reproduce in
Weaknesses
engineering.

Enhancement | There are better practices for coding or architecture.

Suggestions

2. Project Background (Context)

2.1 Project Introduction

Project Website: https://xinFin.org
Coin Symbol: XDC
Project source code: https://github.com/XinFinOrg/XDPoSChain

Audit version: v1.0.1

https://github.com/eminer-pro/go-eminer

2.2 Scope of Audit

The main types of security audit include:

(other unknown security vulnerabilities are not included in the scope of responsibility of this audit)

No. Audit Category Audit Result
1 Code Compliance Audit Some Risks
2 Random Number Generation Algorithm Audit PASS
3 Keystore Audit Some Risks
4 Cryptographic Component Call Audit PASS
5 Encryption Strength Audit PASS
6 Length Extension Attack Audit PASS
7 Transaction Malleability Attack Audit PASS
8 Replay Attack Audit PASS
9 Top-up Program Audit PASS
10 RPC Permission Audit Some Risks

3. Code Overview

3.1 Infrastructure

XDPoSChain is based on the open source go-ethereum(v1.8.3) development.

3.2 Code Compliance Audit

Fork open source blockchain source code or using similar protocol will cause problems such as
replay attacks and node peer pool pollution. We conduct relevant security compliance assessments

for this.

accounts/abi/bind/backends/simulated.go
accounts/keystore/key.go
accounts/keystore/keystore_passphrase.go
common/hexutil/json.go
common/bytes.go
common/constants.go
common/types.go
common/types_test.go
consensus/clique/clique.go
consensus/XDPoS/api.go
consensus/XDPoS/snapshot.go
consensus/XDPoS/XDPoS.go
consensus/XDPoS/XDPoS_test.go
CONSEeNnsus/consensus.go
consensus/errors.go
console/console.go
console/console_test.go
core/state/statedb.go
core/types/block.go
core/types/block_test.go
core/types/transaction.go
core/types/transaction_signing.go
core/types/transaction_test.go
core/block_validator_test.go
core/blockchain.go
core/blockchain_test.go
core/chain_makers.go
core/error.go

core/genesis.go
core/genesis_test.go
core/state_processor.go
core/state_transition.go
core/tx_list.go

core/tx_pool.go

core/tx_pool_test.go
core/types.go
crypto/bn256/cloudflare/gfp_decl.go
crypto/bn256/google/bn256.go
crypto/bn256/google/curve.go
crypto/bn256/google/twist.go
dashboard/assets.go
eth/downloader/api.go
eth/downloader/downloader.go
eth/downloader/downloader_test.go
eth/downloader/queue.go
eth/fetcher/fetcher.go
eth/fetcher/fetcher_test.go
eth/filters/api.go
eth/gasprice/gasprice.go
eth/api.go

eth/api_backend.go
eth/backend.go
eth/backend_test.go
eth/config.go

eth/handler.go
eth/handler_test.go
eth/peer.go
eth/protocol_test.go
eth/sync.go
ethstats/ethstats.go
internal/build/util.go
internal/cmdtest/test_cmd.go
internal/debug/flags.go
internal/ethapi/api.go
internal/ethapi/backend.go
internal/jsre/deps/bindata.go
internal/web3ext/web3ext.go
les/api_backend.go
les/odr_test.go
les/request_test.go
miner/miner.go
miner/worker.go
node/config.go
node/defaults.go
node/service.go

p2p/discover/table.go

p2p/discover/table_test.go

p2p/discover/udp.go

p2p/discover/udp_test.go
p2p/simulations/adapters/inproc.go

p2p/dial.go

p2p/dial_test.go

p2p/peer.go

p2p/peer_error.go

p2p/rlpx.go

p2p/server.go

p2p/server_test.go

params/config.go

rpc/server.go

rpc/types.go

swarm/api/http/error.go

tests/block_test_util.go

trie/trie.go
vendor/github.com/btcsuite/btcd/btcec/secp256k1.go
vendor/github.com/rjeczalik/notify/debug_debug.go
vendor/github.com/rjeczalik/notify/debug_nodebug.go
vendor/github.com/rjeczalik/notify/watcher_fsevents_cgo.go
vendor/github.com/rjeczalik/notify/watcher_notimplemented.go
vendor/github.com/rjeczalik/notify/watcher_readdcw.go
vendor/github.com/rjeczalik/notify/watcher_stub.go
vendor/github.com/rjeczalik/notify/watcher_trigger.go
vendor/github.com/syndtr/goleveldb/leveldb/storage/mem_storage.go
vendor/github.com/syndtr/goleveldb/leveldb/util.go
whisper/whisperv6/api.go

whisper/whisperv6/api_test.go

P2P protocol is the same with Ethereum mainnet, it may cause node peer pool pollution.

Reference: https://mp.weixin.qg.com/s/UmricgY GUakAIZTbOihgdw

3.3 Random Number Generation Algorithm Audit

The generation of the private key seed is based on the ‘crypto/rand” standard library, and the

entropy value is secure.

® crypto/crypto.go

func GenerateKey() (xecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(S256(), rand.Reader)
+

3.4 Keystore Audit

Use the keystore to encrypt the storage, and the password strength is not verified. Weak passwords

such as 123456 can be used in the test, which can be easily cracked.

3.5 Cryptographic Component Call Audit

Signature algorithm: Secp256k1
Hash algorithm: SHA256

Using Ethereum cryptography-related components widely used in the industry, no security risks

have been found.

3.6 Encryption Strength Audit

Weak hash functions such as md5 and shal are not used.

3.7 Length Extension Attack Audit

In cryptography and computer security, a length extension attack is a type of attack where an
attacker can use Hash(messagel) and the length of messagel to calculate Hash(messagel ||
message?2) for an attacker-controlled message?2, without needing to know the content of message1.
Algorithms like MD5, SHA-1, and SHA-2 that are based on the Merkle - Damgard construction are

susceptible to this kind of attack. The SHA-3 algorithm is not susceptible.

No error calls were found.

3.8 Transaction Malleability Attack Audit

The digital signature of the inputs and outputs do not cover the parents and the nonce. On one hand,
this is important to let the transactions be recoved in case of a split-brain, but, on the other hand, it
makes possible to a malicious node to change the transaction hash, or to generate many conflicts.
This problem were fixed in EIP-2.

Vulnerability reference:

https://en.bitcoinwiki.org/wiki/Transaction_Malleability

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md

3.9 Transaction Replay Attack Audit

Each transaction is signed with a unique “nonce” value, and there is no replay attack problem in the
same chain.

Use “chainid" to distinguish different chains when signing transactions, and there is no replay attack
problem for transactions between different chains.

® core/types/transaction_signing.go

// Hash returns the hash to be signed by the sender.

// It does not uniquely identify the transaction.

func (s EIP155Signer) Hash(tx xTransaction) common.Hash {
return rlpHash([linterface{}{

tx.data.AccountNonce,

tx.data.Price,

tx.data.GasLimit,

tx.data.Recipient,
tx.data.Amount,
tx.data.Payload,

s.chainld, uint(@), uint(0),
1)

}

3.10 Top-up Program Audit

The structure of Receipt is as follows, the “Status’ field is used to mark the status of the transaction.

® core/types/receipt.go

// Receipt represents the results of a transaction.

type Receipt struct {

// Consensus fields

PostState [lbyte “json:"root"®

Status uint "json:"status"®

CumulativeGasUsed uint64 "json:"cumulativeGasUsed" gencodec:'required"’
Bloom Bloom " json:"logsBloom" gencodec:"required"’

Logs [IxLog "json:"logs" gencodec:"required"’

// Implementation fields (don't reorder!)

TxHash common.Hash "json:"transactionHash" gencodec:"required"’
ContractAddress common.Address "json:'contractAddress""

GasUsed uint64 "json:'"gasUsed" gencodec:"required"’

}
Initiate a transfer transaction on the main network, the test data is as follows:

curl —-request POST \

—-url https://rpc.xinfin.network//getTransactionByHash \

--header 'content-type: application/json' \

--data
{"jsonrpc":"2.0","method":"eth_getTransactionByHash","params":["Ox85c73e0113cb10b5d08435e
cl1a49ccfdab87753ccf0aec6d98df499eabaaab84"],"id":1}'

{

"jsonrpc": "2.0",

"id": 1,

"result": {

"blockHash":
"Oxb8e8eec36ae0bb6b0c8a22ddb43c2a068b321ccd2bfd1a913ead40ca733f127d1e",

10

"blockNumber": "Ox1beb57d",
"from": "xdc472c619028ba67b817b48f8d64dbb7699ceOfadf"”,
"gas": "0x1908b100",
"gasPrice": "0x9c4",
"hash": "0x85c73e0113cb10b5d08435ec1a49ccfda587753ccfOaec6d98df499eabaaas84",
"input": "0Ox",
"nonce": "0x1a96",
"to": "xdce034d0a2f44f365f827650f2be39f24c8e9833d9",
"transactionindex": "0x0",
"value": "0x409e52b48369a00000",
"v": "0x88",
"r": "Oxfc2e32f3639d850f186e361a5ddfb576f09438d749662b42e65597766a946212",
"s": "0x661fdb0a2ba66fb4b9cd789b6779f0de424b3bfc88c24099d965622b4f6d4acc”
}
}

curl --request POST \

--url https://rpc.xinfin.network//getTransactionReceipt \

--header 'content-type: application/json' \

--data
{"jsonrpc":"2.0","method":"eth_getTransactionReceipt","params":["0x85c73e0113cb10b5d08435e
cl1a49ccfdab87753ccf0aec6d98df499eabaaab84"],"id":1}'

{

"jsonrpc": "2.0",

"id": 1,

"result": {

"blockHash":
"Oxb8e8eec36ae0bb6b0c8a22ddb43c2a068b321ccd2bfd1a913ead0ca733f127d1e",

"blockNumber": "Ox1beb57d",

"contractAddress": null,

"cumulativeGasUsed": "0x5208",

"from": "xdc472c619028ba67b817b48f8d64dbb7699ceOfadf"”,

"gasUsed": "0x5208",

"logs": [1,

"logsBloom":
"0x000
000
000
000
000
000
00",

"status": "Ox1",

"to": "xdce034d0a2f44f365f827650f2be39f24c8e9833d9",

"transactionHash":
"0x85c73e0113cb10b5d08435ec1a49ccfdab87753ccf0aec6d98df499eabaaab84”,

"transactionindex": "0x0"

}

}

When the exchange passes the recharge receipt, it needs to strictly verify the values of “to", ‘value®

and “status’.

11

3.11 RPC Permission Audit

RPC has a wallet function. By default, the node keeps the RPC port open in the WAN, which is
insecure. The exchange should disable the account module and keep the port open in the local host.

Vulnerability reference: https://mp.weixin.qg.com/s/Kk2IsoQ1679Gda56Ec-zJg

4. Audit Result

4.1 Low-risk Vulnerabilitys

® \Weak passwords can be used in the keystore, which can be easily cracked.

® P2P protocol is the same with Ethereum mainnet, it may cause node peer pool pollution.

4.2 Enhancement Suggestions

® There are RPC "Black Valentine's Day Vulnerabilities", which can lead to node privacy disclosure
or asset theft. It is recommended to prohibit unlocking accounts when opening RPC, or only
open RPC ports locally.

® Keep RPC port closed, or do not open in WAN.

4.3 Conclusion

Audit result: PASS
Audit No. : BCA002104300001
Audit date: April 30, 2021

Audit team: SlowMist security team

12

Summary conclusion: After correction, all problems found have been fixed and the above risks have

been eliminated by XDPoSChain. Comprehensive assessed, XDPoSChain no risks above already.

5. Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the
issuance of this report, and only assumes corresponding responsibility base on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to
judge the security status of this project, and is not responsible for them. The security audit analysis
and other contents of this report are based on the documents and materials provided to SlowMist by
the information provider till the date of the insurance this report (referred to as "provided
information"). SlowMist assumes: The information provided is not missing, tampered with, deleted or
concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent
with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting
therefrom. SlowMist only conducts the agreed security audit on the security situation of the project
and issues this report. SlowMist is not responsible for the background and other conditions of the

project.

13

ErsLowmisT

Official Website
www.slowmist.com

N
E-mail
team@slowmist.com

Y

Twitter
@SlowMist_Team

O

Github
https://github.com/slowmist

	11. Executive Summary
	2. Project Background (Context)
	2.1 Project Introduction
	2.2 Scope of Audit

	3. Code Overview
	3.1 Infrastructure
	3.2 Code Compliance Audit
	3.3 Random Number Generation Algorithm Audit
	3.4 Keystore Audit
	3.5 Cryptographic Component Call Audit
	3.6 Encryption Strength Audit
	3.7 Length Extension Attack Audit
	3.8 Transaction Malleability Attack Audit
	3.9 Transaction Replay Attack Audit
	3.10 Top-up Program Audit
	3.11 RPC Permission Audit

	4.Audit Result
	4.1 Low-risk Vulnerabilitys
	4.2 Enhancement Suggestions
	4.3 Conclusion

	5. Statement

